精确而高性价比的测试对于确保LED器件的可靠性和质量至关重要。LED测试在生产的不同阶段具有不同类型的测试序列,例如设计研发阶段的测试、生产过程中的晶圆级测试、以及封装后的最终测试。本文着重探讨电气特征分析,而在适当的时候介绍部分光学测量技术。
LED测试在生产的不同阶段具有不同类型的测试序列,例如设计研发阶段的测试、生产过程中的晶圆级测试、以及封装后的最终测试。LED的测试一般包含电气和光学测量,而本文着重探讨电气特征分析,只在适当的时候介绍部分光学测量技术。图1给出了典型二极管的电气I-V曲线。完整的测试应该包含大量的电压值与对应的电流工作点,但是一般情况下有限的采样点就足以测试出器件的品质因数。
图1:典型LED的直流I-V曲线和电感单位测试点
很多测试需要提供已知的电流然后测量电压,而另外一些测试需要提供电压然后测量产生的电流。因此,具有集成的、同步的源和测量功能的高速测试仪器对于这类测试是非常理想的。
正向电压测试
在LED测试序列中,正向电压(VF)测试检验的是可见光LED上的正向工作电压。当在二极管上加载一个正向电流时,它开始导通。刚开始在低电流下,二极管上的电压降快速上升,但是随着驱动电流的增加,电压斜率开始变平。二极管一般工作在这个电压相对恒定的区域。在这些工作条件下对二极管进行测试也非常有用。VF测试需要提供一个已知的电流然后测量二极管上产生的电压降。典型的测试电流范围从几十毫安到几安,而产生的电压大小通常在几伏的范围。有些制造商利用这种测试的结果进行器件分拣,因为正向电压与LED的色度(由色彩主波长或者互补波长及其纯度共同表征的色彩品质)相关。
光学测试
正向偏置电流也用于光学测试,因为电子电流与发光的强弱密切相关。通过在待测器件附近放一个光电二极管或者累计球捕捉发出的光子可以测出光强度(optical power)。然后将光转换成电流,利用共模电感安培计或者源测量仪器的一个通道测量电流的大小。
在很多测试应用中,二极管的电压和发出的光可以利用大小固定的电流源同时测出来。此外,利用分光计可以在同样大小的驱动电流下测出诸如光谱输出之类的详细参数。
反向击穿电压测试
对LED加载一个反向偏置电流可以测出反向击穿电压(VR)。测试电流的大小应该设置为当电流稍微增加时测出的电压值不再明显增大的位置。当电压高于这个电压值时,反向偏置电流的大幅增加导致反向电压变化不明显。这个参数指标通常是一个最小值。在测试VR时要在一定的时间内加载一个小的反偏电流,然后测量LED上的电压降。测量结果的大小范围通常为几十伏。
漏电流测试
一般地,漏电流(IL)的测量塑封电感器使用中等大小的电压(几伏到几十伏)。漏电流测试测量的是当加载的反向电压低于击穿电压时LED上泄漏的小电流。在差模电感生产过程中确保漏流不超过一定的阈值是漏流测量的常用做法,也是隔离测量更普遍的做法。其中有两个原因。第一,低电流测量需要较长的稳定时间,因此它们需要更长的时间才能完成。第二,环境干扰和电噪声对低值信号具有较大的影响,因此需要额外的屏蔽措施。这些额外的屏蔽措施增加了测试夹具的复杂性,并且可能干扰自动机械手的操作。
智能仪器提升LED生产测试能力
过去,在很多LED生产测试系统中人们常常采用PC机控制测试的各个方面。换句话说,在测试序列的每个组成部分中,每个测试必须对信号源和测试仪器分别配置,执行所需的操作,然后将数据返回给控制PC。控制PC然后进行pass/fail判断模压电感器并执行相应的操作对DUT进行分拣。发送和执行的每条命令都浪费了宝贵的测试时间,因此降低了处理能力。显然,在这类以PC为中心的测试结构中,大部分测试序列时间都被PC和测试仪器之间的通信所消耗了。
相反,当前很多智能仪器,例如2600A系列数字源表,通过减少通信总线上的通信量,使得大幅提高复杂测试序列的能力成为可能。在这些仪器中,测试序列的主要部分嵌入在仪器内部。测试脚本处理器(TSP)是一种全能的测试序列引擎,能够利用内置的pass/fail判据、数学和计算公式控制测试序列和数字I/O端口。TSP能够将用户自定义的测试序列保存在存储器中然后根据命令执行它。这样就限制了测试序列中每一步的设置和配置时间,通过最大限度减少与PC和仪器的通信而提高了测试产能。这类仪器的编程过程相对简单:1)创建脚本;2)将脚本下载到仪器中;3)调用脚本执行。对于2600A系列仪器,用户可以利用仪器本身提供的Test Script Builder软件编写或者下载脚本,或者从用Visual Basic或LabVIEW等语言编写的用户应用程序中下载到仪器中。 大功率电感厂家 |大电流电感工厂