深圳市瑞申电子有限公司

深圳市瑞申电子有限公司是一家10年专业大功率电感生产加工厂商,主要以大功率,大电流、扁平线圈电感、平面变压器设计、生产、销售工厂。设计、绕线、组装、检测、包装、出货等全制程的工艺流程!拥有完整、科学的质量管理体系。专业技术团队10人,我们的诚信、实力和产品质量获得业界的认可。欢迎各界朋友莅临参观、指导和业务洽谈。 ...

电源系统开机工作不正常、低温不开机

时间:2021-12-18 06:47:50 点击:

例1:低温不开机

国内某通讯公司,做了一批基站系统,出口到俄罗斯,7、8份的时候,就有一些产品开始返回,原因是系统不能开机,换了另外的系统板后,系统能工作正常。

有问题的系统板在国内的实验室测试,客户的工程师发现能够正常工作没有问题,以为是个例,没有太关注。

到了10、11月,发现不能开机工作的系统越来越多,客户工程师才开始重视这个问题,找到功率MOSFET的供应商,对方的FAE说功率MOSFET都正常,没有问题,于是就不再处理。

由于系统板上使用了当时作者所在公司的PWM控制器,客户也找到作者去解决问题。

问题分析:检查后,发现通讯系统板直接使用电源模块将-48V变为3.3V,然后用Buck降压变换器将3.3V变为系统板上各种芯片供电所需的的2.5V、1.2V等电压。

降压变换器使用PWM芯片外加分立的功率MOSFET,客户工程师选用的是逻辑电平驱动的功率MOSFET,因此问题就产生了。

使用3.3V的VCC电压线PWM芯片供电,Buck变换器的上管需要浮驱,因为上管的源极电压不是固定,PWM内部自举二极管的压降为0.4V,实际加在上管的驱动电压只有2.9V。

前面讨论过,逻辑电平驱动的功率MOSFET的VTH中间值1.5-2V,查看客户选用的功率MOSFET数据表,VTH的上限电压2.5V,实际的驱动电压为2.9V,在常温下,大多数器件的VTH在中间值,即使是处在VTH上限的器件,虽然驱动电压的裕量非常小,驱动电压较低导致器件的温度上升,但是MOSFET仍然可以正常的工作。

由于VTH是负温度系数,当温度降低的时候,VTH值就会增加,这样功率MOSFET的沟道反型层的宽度就会变得越来越小,导通电阻逐渐增大。

随着温度的进一步降低,VTH值就会进一步的增大,处于VTH上限电压的一些器件的沟道反型层宽度低到一定值,器件无法完全导通,系统就不能开机正常工作。

温度降得越低,不能工作的器件就会越多,就出现了问题中所出规的情形。

和客户工程师设计后,给出了二个方案:

(1)选用次逻辑电平驱动的功率MOSFET。

(2)使用一个小的BOOST升压变换器或充电泵,将3.3V的电压升到5V,给PWM芯片的VCC供电。

由于大电流的次逻辑电平驱动的功率MOSFET价格非常贵,而且型号特别少,交货时间长,客户工程师采用了通用性比较强的第二种方案,使用一个小的

集成的BOOST升压变换器,问题解决。

总结:当发现电源系统低温不开机或工作不正常的时候,首先检查PWM输出的驱动信号是否正常。

如果驱动信号正常,那么就要检查产生的原因是否是因为驱动电压的不足。

例2:开机工作不正常

国内某电视机公司,使用MCU的I/O口直接控制LED背光驱动的升压Boost变换器,发现系统有些能正常工作,有些不能正常工作,有些重复开关机几次后能工作,而且有问题的系统只要正常工作就没有问题,客户找到作者寻求帮助。

问题分析:检查系统,发现MCU的供电电压为5V,使用的功率MOSFET为通用驱动电压的功率MOSFET。

通用电平驱动的功率MOSFET的VTH中间值3V,VTH的测量的条件为:IDDS=250uA,这只是沟道刚开始形成反型层的电压,如果要使这种类型的MOSFET完全开通,驱动电压至少要7V以上。

当驱动电压降低时,沟道的宽度就会减小,导通电阻变大,低到一定的值,器件就不能完全导通。

由于功率MOSFET的VTH是负温度系数,VTH外在临界状态的器件,反复开关机几次,虽然导通电阻大,电流小,由于工作在线性区,只要能产生足够的功耗,器件的温度上升,VTH就会降低,因此系统就进入正常的工作,这也就是为什么有些器件反复开关机几次能正常工作的原因。

解决的方案:更换逻辑电平驱动电压的功率MOSFET。

例3:负载开关开机工作不正常

国内某电视机公司,使用AO3401A做负载开关,如下图,用来缓冲热插入移动硬盘的瞬间冲击电流,防止瞬间把主机芯电压拉低,发现系统不能开机。

问题分析:检查系统,发现R45/R46设置的驱动电压不够,查阅AO3401A的数据表,可以看到,VTH的上限为-1.3V,为了保证AO3401A完全导通,R46上所得到分压的绝对值必须要大于1.3V,同时要有足够的裕量,因为还要考虑到分压电阻参数值的分散性和AO3401A的温度系数。

图中,R45串联在G极,和C18、R46一起调节MOSFET的开通速度,R45和46通过分压,在满足要求的开通速度条件下,同时保证VGS不能超过最大额定电压;另外,R46上的分压值也不能太小,否则在稳态下AO3401A不能完全导通。

解决的方案:适当的减小R45或增大R46的电阻值,系统工作正常。

例4:驱动电压和VTH下限的优化选择

功率MOSFET的栅极驱动电压要比VTH大许多才能保证器件完全开通,对于一个系统,最大的电流是相对固定的,因此对应的米勒平台电压也是固定的,如果感应的VGS超过米勒平台电压持续一定时间,形成真正的直通,而不是弱直通,就会导致器件中产生大电流的冲击,严重的情况下系统还会炸机。

器件工作在过载或在高温下工作,由于VTH是负温度系数,VTH降低,直通的可能性大大增加。

功率MOSFET驱动电路很少用负压吸收VTH的感应电压尖峰,在高压的应用中,dv/dt非常大,耦合到栅极产生的感应电压比较大,因此容易导到MOSFET产生误触发导通。

除了在电路上进行优化,可以设定VTH的下限来防止MOSFET产生误触发导通。

大功率电感厂家 |大电流电感工厂
  • 贴片功率电感:开发平价LED灯惠泽百姓生活(下)
    补贴政策开启百姓市场 平价LED照明灯具正是老百姓市场所需求的,将是全球市场的海量产品,它必将走进全世界成万上亿户的家庭。LED照明灯具只有把零售价格降至荧光节能灯的零售价才能迎来海量生产,才能使
  • LED驱动器的原理及典型应用
    在各种不同类型的光源中,高亮度 LED(发光二极管) 目前增长势头良好,正开始替代白炽灯、卤素灯、荧光灯、 HID氙气灯等其它种类的光源。近年来,高亮度 LED(HBLED)开始用于建筑照明、装饰照明
  • 基于瞬时无功电流理论三相谐波提取的DSP实现
    首先回顾和总结了目前谐波提取的方法并比较了各种方法的特点;详细地讨论了一种基于瞬时无功电流理论三相谐波提取的方法并讨论了这种方法的低通数字滤波器设计,具体分析研究了滤波器的种类、截止频率和采样频率对三
  • 大功率电感