摘要:提出了一种基于TMS320C5402实现正弦信号发生器的设计原理与方法,介绍了所设计的正弦信号发生器硬件电路结构和软件程序流程图。结合DSP硬件特性,通过使用泰勒级数展开法得到设定参数的正弦波形输出,达到设计目的。该信号发生器弥补了通常信号发生器模式固定,波形不可编程的缺点,其具有实时性强,波形精度高,可方便调节频率和幅度、稳定性好等优点。
关键词:数字信号处理器;信号发生器;多通道缓冲串行口;独立键盘
随着计算机技术的飞速发展,对信号发生器波形的要求越来越高。目前,常用信号发生器大部分是由模拟电路构成,当这种模拟信号发生器用于低频输出时,由于需要较大的RC值,导致参数准确度难以保证,且造成体积和功耗偏大,而数字式波形发生器,因其输出幅值稳定、输出频率连续可调的优点,已逐渐取代了模拟电路信号发生器。由于其运算速度高,系统集成度强的优势,可以设计基于DSP的正弦信号发生器,该发生器实时性强、可扩展性好、波形精度高、可调节频率和幅度、稳定性好、用途广泛,各电感厂家方面均优于模拟信号发生器和数字信号发生器。因此,本文提出了一种基于TMS320C5402的正弦信号发生器的设计方法。
1 系统硬件设计
1.1 系统硬件框图
该正弦信号发生器的硬件结构框图如图1所示,主要由TMS320C5402芯片,D/A转换器,独立键盘等几部分组成。
1.2 TMS昆山电感厂320C5402简介
TMS320C5402芯片采用先进的修正哈佛结构,片内有8条总线、在片存储器和在片外围电路等硬件,同时还有高度专业化的指令系统,具有功耗小、高度并行等优点。此外,其支持C语言和汇编语言混合编程,高效的流水一体电感线操作和灵活的寻址方式使其适合高速实时信号处理。
1.3 数模转换部分设计
McBSP(Multi-channel Buffered Serial)即多通道缓冲串口,包括一个数据通道和一个控制通道。数据通道通过DX引脚发送数据、DR引脚接收数据。控制通道完成的任务包括内部时钟的产生、帧同步信号的产生、对这些信号的控制以及多通路的选择等。此外还负责产生中断信号送往CPU,产生同步事件信号通知DMA控制器。控制信息则是通过控制通道以时钟和帧同步信号的形式传送。
数模转换芯片采用TLC320AD50C,其是TI公司出品的一块将A/D和D/A转换功能集成在一起的接口芯片,采用∑-△技术在低系统成本下实现高精度的A/一体电感D和D/A转换。该芯片由一对16 bit同步串行转换通道组成,在A/D之后有一个抽取滤波器,在D/A之前有一个插值滤波器。
TLC320AD50C可以与TMS320C5402 DSP的McBSP无缝串行连接进行数据采集、存储和处理。SCLK输出时钟,M/S主从模式选择(H为高电平,为主机模式),DIN串行输入,DOUT串行输出,FS帧同步信号输出,对应DSP的各相应引脚。McBSP和D/A芯片的硬件电路连接如图2所示。
1.4 独立键盘的设计
本信号发生器采用独立键盘作为人机接口部分,即各个按键相互独立,按下相应的按键,就能输出对应幅度和频率的正弦波。
图3所示为中断方式工作的独立式键盘的连接图,每个按键各接一根I/O接口线,每根I/O接口线上的按键都不影响其它的I/O接口线。因此,可以通过检测I/O的电平状态判断出哪个键按下。这4个独立按键分别接HD0~HD3口,并且使用4个220 Ω的上拉电阻接Vcc。
当没有按下键时,对应的I/O接口线输入为高电平,当按下键时,对应的I/O插件电感器接口线输入为低电平,则请求中断INT1。而在读键时,每一个键的状态通过读入键值的高低电平来反应。在中断服务程序中通过执行判键程序,判断是哪个键按下,从而设置对应的幅度和频率,执行产生正弦波形的程序。
独立式键盘的电路配置灵活、软件简单。但每个按键要占用1根I/O接口线,在按键较多时,I/O接口线浪费较大。故在按键数量不多时采用这种方法,本系统采用4个独立按键,而DSP芯片有足够的I/O接口可供使用,设计时可以充分利用这一特点来连接硬件,至于对按键时抖动的消除可在软件中完成。使用中断,可提高CPU的效率,实现资源共享和并行处理,同时也可以在芯片运行过程中对突发故障做出及时发现和处理。
大功率电感厂家 |大电流电感工厂