一、电路原理图
图1 电路原理图
二、电路贴片电感器企业描述
本电路为非隔离式、非连续导通模式反激转换器电路,以350 mA的输出电流为电压为12V到18 V的LED灯串提供驱动。驱动器完全能够在宽输入电压范围内工作,并提供高功率因数。本电路可同时满足输入浪涌和EMI要求,其元件数较少,能够使电路板尺寸满足LED灯泡替换应用的要求。
1 、调光性能设计指南
对于使用低成本的可控硅前沿相控调光器提供输出调光的要求,我们需要在设计时进行全面的权衡。由于LED照明的功耗非常低,整灯吸收的电流通常要小于调光器内可控硅的维持电流。这样会产生调光范围受限和/或闪烁等不良情况。由于LED驱动器的阻抗相对较大,因此在可控硅导通时,会产生很严重的振荡。在可控硅导通的一瞬间,一股非常大的浪涌电流会流入驱动器的输入电容,从而激发线路功率电感并造成电流振荡。这同样会造成类似不良情况,因为振荡会使可控硅电流降至零并关断,同时造成LED灯闪烁。为克服这些问题,电路中采用了两个电路功能块–一个有源衰减电路和一个泄放电路。这些电路功能块的缺点是会增大功耗,进而降低电源的效率。
在本设计中衰减电路和泄放电路的取
值能够使一个电路板与的绝大多数调光器(600 W以下的调光器并包括低成本前沿可控硅调光器)在整个输入电压范围内正常工作。这一设计可实现在高压输入时将一个灯连接一个调光器来实现无闪烁照明。一个灯在高压下工作会导致最小输出电流和最大浪涌电流(可控硅导通时),这代表最差情况。因此,主动衰减电路和泄放电路的作用非常明显:泄放电路可降低阻抗,衰减电路可提高阻抗。但这会增加功耗,进而降低驱动器的效率和整个系统的效能。
要求将多个灯连接到一个调光器以便正常工作会降低泄放电路所需的电流,此时可增大R10和R11的值并减小C6的值。
如果使灯具仅在低压(85 VAC至132 VAC)下工作时,可在前沿可控硅调光器导通时出现的峰值电流大幅降低时降低R7和R8的值。这两电感器企业种更改都会降低散耗和提高效率。对于非调光应用,可直接省去这些元件,用跳线替代R7和R8,从而提高效率,但不会改变其他性能特性。