良好设计的电感器效率降低微乎其微。不同的磁芯材料和形状可以相应改变电感器的大小/电流和价格/电流关系。采用铁氧体材料的屏蔽电感器尺寸较小,而且不辐射太多能量。选择何种电感器往往取决于价格与尺寸要求以及相应的辐射场/EMI要求。
消除输出电容器可以在成本和占板空间两方面实现节省。输出电容器的基本选择取决于纹波电流、纹波电压以及环路稳定性等各种因素。
输出电容器的有效串联电阻(ESR)和电感器值会直接影响输出纹波电压。利用电感器纹波电流((IL)和输出电容器的ESR可以简单地估测输出纹波电压。
因此,设计时应当选用ESR尽可能低的电容器。例如,采用X5R/X7R技术的4.7uF到10uF电容器表现为10m(范围的ESR值。轻负载(一体电感或者不考虑纹波的应用)也可以使用容值更小的电容器。
TI的控制环路架构使您能够采用自己首选的输出电容器,同时还可以补偿控制环路,以实现最佳的瞬态响应和环路稳定性。当然,内部补偿能够理想地支持一系列工作条件,而且能够敏感地响应输出电容器参数变化。
&一体成型电感公司nbsp; TPS6220x系列降压转换器具有内部环路补偿功能。因此,必须选择支持内部补偿功能的外部LC滤波器。对于此类器件而言,内部补偿最适合16kHz的LC转角频率(cornerfrequency),即10uH电感器与10uF输出电容器。根据一般经验法则,在选用不同输出滤波器时,L*C乘积不应当大范围变动。在选择更小的电感器或电容器值时,会造成转角频率增加至更高频率,因此这一点尤为重要。
一体电感生产厂家在从负载瞬态出现到打开P-MOSFET期间,输出电容器必须提供负载所需的全部电流。输出电容器提供的电流会造成经过ESR的电压降低(从输出电压中扣除)。ESR越低,输出电容器提供负载电流时的电压损耗就越低。为了降低解决方案尺寸并且提升TPS62200转换器的负载瞬态性能,建议采用4.7uH电感器和22uF输出电容器