深圳市瑞申电子有限公司

深圳市瑞申电子有限公司是一家10年专业大功率电感生产加工厂商,主要以大功率,大电流、扁平线圈电感、平面变压器设计、生产、销售工厂。设计、绕线、组装、检测、包装、出货等全制程的工艺流程!拥有完整、科学的质量管理体系。专业技术团队10人,我们的诚信、实力和产品质量获得业界的认可。欢迎各界朋友莅临参观、指导和业务洽谈。 ...

PWM-controlled 4–20mA transmitter is galvanically isolated

时间:2015-03-15 11:38:26 点击:
This loop-powered, 4–20mA precision transmitter includes a precision PWM signal coupler with galvanic isolation from the PWM signal source. The external PWM-encoded signal is a rectangular waveform generated by a microcontroller or PWM modulator, and is usually produced by a control algorithm run by the microcontroller from a sensor output or other analog-command level.
A similar version of this article appeared in the February 24, 2009 issue of EE Times magazine.

The accuracy of a 4–20mA transmitter depends on the integrity of its current-loop path, which must be free of shunt paths and ground loops—both within the transmitter and external to it. External to the transmitter are spurious paths in the outside loop wiring and its power supply. Internal to the transmitter, shunt paths and ground loops are usually created at the point where you insert a control signal i一体电感器nto the transmitter circuitry. To eliminate errors introduced by possible spurious current paths, the signal must be DC coupled with full galvanic isolation yet inserted with accuracy.

The circuit of Figure 1 comprises a loop-powered 4–20mA precision transmitter 插件电感(MAX4236, BSP149, and MAX6138A) with large-compliance output stage, and a precision PWM signal coupler with galvanic isolation from the PWM signal source.

Figure 1. This loop-powered 4–20mA transmitter features PWM drive and galvanic isolation from the input signal.
Figure 1. This loop-powered 4–20mA transmitter features PWM drive and galvanic isolation from the input signal.

The external PWM-encoded signal is a rectangular waveform generated by a microcontroller or PWM modulator, and is usually produced by a control algorithm run by the microcontroller from a sensor output or other analog-command level. The input-signal duty cycle represents the original signal as a percentage of an arbitrary reference. In this case, the PWM-coupler values are adjusted so a 0% duty cycle corresponds to 4mA from the transmitter, and a 100% duty cycle corresponds to 20mA.

Sections A and B of the NC7NZ17#1 (a TinyLogic UHS triple buffer with Schmitt-trigger inputs) form a bipolar edge detector that applies a short 20ns pulse to the 3-turn primary of transformer T1. The polarity of this pulse depends on the sign of the input edge 电感磁芯being detected.

At the secondary of T1, the pulse sets or resets the flip-flop formed by buffer #2A and the secondary, thereby replicating the input signal at the output of #2A. T1 is a 3-to-2-turn transformer built around a Fair-Rite ferrite core, type 2673000101. Its small size (3.5mm in diameter and 3.25mm in length) yields < 1pF of capacitance at the primary and secondary. The maximum voltage it can withstand depends on the wire insulation used and the way T1 is mounted.

The two remaining buffer sections (B and C) are connected in parallel with their inputs attached to the flip-flop output. Their outputs produce a precision signal whose duty cycle replicates that of the input signal, yet provides precise and stable low/high values—thanks to the CMOS output that tracks the rail voltages exactly, and to the precision reference (MAX6138A) that serves as the transmitter power supply.

The paralleled buffer outputs drive a low-pass filter whose output is the average of the reconstituted PWM input signal, referred to the value of the transmitter supply voltage (the 2.5V precision reference). This average value is a stable and very linear analog of the input signal's duty cycle. Fast propagation in the coupler (< 30ns H L and L H), and its small skew (< 2ns) ensure that negligible nonlinearity is introduced by the digital part of the coupler. The recovered average value drives the transmitter output, producing 4mA at 0% duty cycle and 20mA at 100%. For PWM input frequencies in the range 500Hz to 50kHz, the circuit operates with less than 0.1% coupler insertion error.

After power-up, power-loss, or loss of input signal, the Fig贴片电感器ure 1 circuit's output state can remain undetermined until after the next input transition edge. The circuit of Figure 2 removes that ambiguity with an "input-transitions loss detector." When triggered by an interval of approximately 3ms with no transitions, it connects the transmitter directly to the output of an optocoupler. The optocoupler senses the state of the input line at which it is resting, and imposes that state on the output current. That is, H state = 100% duty cycle 大功率电感厂家 |大电流电感工厂
  • 功率电感线圈
    功率电感线圈是由导线一圈*一圈地绕在绝缘管上,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯,简称功率电感。用L表示,单位有亨利(H)、毫亨利 (mH)、微亨利(uH),1H=1
  • 电流互感器磁芯复位问题求教【有图】
    上图是赵修科老师192页中,脉冲直流互感器的一段截图 右侧原理图表示的一个电流互感器,有句话不明白 初级电流断开后,次级感应电势下正上负,二极管反向截止,怎么能磁复位??
  • 七段LED数码管结构
    (a) 管脚图 (b) 共阴极 (c) 共阳级七段LED数码管的驱动电路(a) BCD 七段译码法 (b) 软件译码法多位七段LED数码显示器结构利用人的视觉延迟的特点,采用扫描的方式驱动多位七段LE
  • 大功率电感