深圳市瑞申电子有限公司

深圳市瑞申电子有限公司是一家10年专业大功率电感生产加工厂商,主要以大功率,大电流、扁平线圈电感、平面变压器设计、生产、销售工厂。设计、绕线、组装、检测、包装、出货等全制程的工艺流程!拥有完整、科学的质量管理体系。专业技术团队10人,我们的诚信、实力和产品质量获得业界的认可。欢迎各界朋友莅临参观、指导和业务洽谈。 ...

光通信用的多路半导体激光器监控系统研究

时间:2015-04-23 19:57:15 点击:

摘要:依据波分复用(WDM)在光通信中的应用需求,研制了一套多路半导体激光器(LD)监控系统作为通信系统光源。该系统采用USB 2.0高速传输模式,DSP与FPGA构建数字通信单元,以上位机作为监控平台,实现了高效调制多路激光器波长和功率,同步采集多路数据,实时监测各路激光器状态等功能。所研究的LD恒温及LD光功率恒值控制具有良好的控制精度。实验结果表明,在1 h内温度稳定性达±0.01℃,功率稳定性达0.5%。
关键词:光通信;多路LD监控系统;稳定性;温度-波长调制

0 引言
光纤通信以其通信容量大、保密性强、重量轻等优点,已成为未来通信的主要手段一体电感,且随着WDM技术在光通信中的应用,进一步增大了通信容量。由于在一个光通信窗口内同时传输多个波长的光信号,且每路光均承载一定的信息量。因此,对激光光源波长调制精度及稳定性要求很高。
目前国内对单路激光光源的研究日趋成熟,而对多路激光光源配合工作及上层监控系统的研究开展较少。一方面,如果各光源独立工作,在通信前需分别调制各光源波长和功率参数,降低了调制效率,尤其在某个较窄的通信窗口内,更需要高效合理地分配波长资源,单路调节难以实现。另一方面,光源的数字单元多采用单片机和串口控制传输,速度低、通用I/O少,难以满足对多路光源的高效控制和高速采集传输的要求。基于此,本文研制了一套多路LD监控系统,由上位机统一管理,用DSP和FPGA双控制器替代单片机,USB 2.0替代串口通信,与上位机配合实现了快速精确调制多路LD参数(波长和功率),实时监测各路LD工作状态和图形化显示等功能。实验结果表明,在1 h内,温度稳定性达±0.01℃,功率稳定性达0.5%。

1 多路LD监控系统总体设计
如前述,波长调制精度和稳定性直接影响到WDM的实现。目前波长调制方法主要有电流一波长调制和温度一波长调制法,各自优缺点见表1。考虑到光通信对功率稳定性的要求,本文选用温度一波长调制。

a.jpg


本系统按照自上向下的设计思路,由上位机程序作为监控系统的操作平台,通过USB 2.0发送控制命令,包括开/关电源、调制参数(LD温度和功率初值)和监测。专用于通信领域的DSP(TMSVC5416)接收并分析命令,配合FPGA操作D/A和A/D等接口,实现参数调制和数据采集,最终由上位机实时显示,多路LD监控系统总体组成如图1所示。

b.jpg



2 控制系统设计
控制系统包括恒温、恒功率控制单元,远程开/关电源和参数设定电路的设计。其中,恒温、恒功率控制单元确保了光源波长、功率的稳定,配合参数设定电路方便了对光源参数的精确调整。
2.1 恒温、恒功率单元设计
恒温、恒功率单元组成框图如图2所示,各单元又分为设定、采样和驱动电路,共同作用于蝶形封装的半导体激光器。其中热沉一侧的LD和光电接收器(PD),组成功率回路;另一侧的热敏功率电感电阻(THM)和热电制冷器(TEC)组成温度回路。事先通过标定温度-电压和功率-电压的对应关系,由上位机发送设定值,经D/A电路以电压形式输出到比较电路的一端电感的单位,同时THM提取LD温度信息,PD串联的采样电阻提取LD功率信息输出到比较电路的另一端,TEC和OCL功率放大电路分别根据设定值和实际值的偏差信号动态调节LD的温度和功率,使其与设定值无限逼近。另贴片电感外在恒温控制中引入PI分离电路解决了温度-波长调制速度慢,且其稳定性也得到了保证。

c.jpg


2.2 PI分离控制电路设计
PI控制器原理简单、参数易调且实用性强,因此应用广泛。本系统中的比例环节(P)主要是为了提高温度响应速度,积分环节(I)主要是为了消除静差、提高精度,但在大幅度增减温度设定值或外部干扰情况下,短时间内比较电路输出有较大的偏差,造成积分积累达到饱和,可能给恒温单元带来较大的超调,甚至引起振荡。
为了使温度较快进入高稳定状态,本系统采用PI分离电路的设计思路,当温度设定值与实际测量温度值偏差较大时,取消积分作用,避免因积分饱和致使其控制量过大,引起超调;当偏差值较小时引入积分作用,消除静差,可有效减小外界干扰,提高温度稳定性。在实际电路中采插件电感用电阻串联分压模式,设定两个阈值U1和U2(U1<U2),通过阈值比较电路将偏差e(t)(设定值r(t)与测量值c(t)的差值),与两个阈值比较后,输出两个控制量分别控制开关K1和K2的通断。当e(t)<U1时,取消比例作用;当U1<e(t)<U2时,比例积分同时作用;当e(t)>U2时,为防止积分饱和而取消积分作用。PI加和后输出μ(t)驱动TEC,数值为正时加热,且数值越高加热功率越大;为负时制冷,且绝对值越大制冷功率越大,如图3所示。 大功率电感厂家 |大电流电感工厂

  • 高边PMOS管,既控制电源输出的导通与断开,同时想通过它...
    本帖最后由yugzhi于2017-3-3117:14编辑 如题:各位大侠,我的电源输出在高边有一个PMOS管,为了保证可靠性,不能在低边做电流检测和用NMOS做导通与断开,只能在高边用PMOS管做导通与
  • 基于USB 的无线传输系统设计与实现
    距离产生了通信的需求,距离的增加对通信提出了更高的要求。和有线通信相比,无线通信技术由于其更为方便实用而越来越得到更多的应用,实现无线传输的方案也是多种多样。本文中设计并实现了一种应用无线传输技术的
  • 基于Maflab的IIR数字滤波器设计及DSP实现
    摘要:IIR滤波器是一种被广泛应用的基本的数字信号处理部件。基于DSP信号处理的优越性,将Matlab与DSP相结合应用于IIR滤波器的设计。介绍了IIR数字滤波器的理论及其Matlab常用设计函数,
  • 大功率电感