深圳市瑞申电子有限公司

深圳市瑞申电子有限公司是一家10年专业大功率电感生产加工厂商,主要以大功率,大电流、扁平线圈电感、平面变压器设计、生产、销售工厂。设计、绕线、组装、检测、包装、出货等全制程的工艺流程!拥有完整、科学的质量管理体系。专业技术团队10人,我们的诚信、实力和产品质量获得业界的认可。欢迎各界朋友莅临参观、指导和业务洽谈。 ...

语音识别技术在微机器人控制系统中的应用

时间:2016-08-16 06:12:54 点击:

 本文基于毫米级全方位无回转半径移动机器人课题。微系统配置示意图如图1所示。主要由主机Host(配有图像采集卡)、两个CCD摄像头(其中一 个为显微摄像头)、微移动装配平台、微机器人本体和系统控制电路板等组成。计算机和摄像机组用于观察微机器人的方位,控制系统控制微机器人的移动。

  本文在系统控制电http://www.szmzhg.com/电感厂家路中嵌入式实现语音识别算法,通过语音控制微机器人。 微机器人控制系统的资源有限,控制方法比较复杂,并且需要有较高的实时性,因此本文采用的语音识别算法必须简单、识别率高、占用系统资源少。 HMM(隐马尔可夫模型)的适应性强、识别率高,是当前语音识别的主流算法。使用基于HMM非特定人的语音识别算法虽然借助模板匹配减小了识别所需的资源,但是前期的模板储存工作需要大量的计算和存储空间,因此移植到嵌入式系统还有一定的难度,所以很多嵌入式应用平台的训练部分仍在PC机上实现。 为了使训练和识别都在嵌入式系统上实现,本文给出了一种基于K均值分段HMM模型的实时学习语音识别算法,不仅解决了上述问题,而且做到了智能化,实现了真正意义上的自动语音识别。 1 增量K均值分段HMM的算法及实现 由于语音识别过程中非特定的因素较多,为了提高识别的准确率,针对本系统的特点,采用动态改变识别参数的方法提高系统的识别率。 训练算法是HMM中运算量最大、最复杂的部分,训练算法的输出是即将存储的模型。目前的语音识别系统大都使用贝斯曼参数的HMM模型,采取最大似然度算 法。这些算法通常是批处理函数,所有的训练数据要在识别之前训练好并存储。因此很多嵌入式系统因为资源有限不能达到高识别率和实时输出。 本系统采用了自适应增量K均值分段算法。在每次输入新的语句时都连续地计算而不对前面的数据进行存储,这可以节约大量的时间和成本。输入语句时由系统的识别结果判断输入语句的序号,并对此语句的参数动态地修改,真正做到了实时学习。 K均值分段算法是基于最佳状态序列的理论,因此可以采用Viterbi算法得到最佳状态序列,从而方便地在线修改系统参数,使训练的速度大大提高。 为了达到本系统所需要的功能,对通常的K均值算法作了一定的改进。在系统无人监管的情况下,Viterbi解码计算出最大相似度的语音模型,根据这个假 设计算分段K均值算法的输入参数,对此模型进行参数重估。首先按照HMM模型的状态数进行等间隔分段,每个间隔的数据段作为某一状态的训练数据,计算模型 的初始参数λ=f(a,A,B)。采用Viterbi的最佳状态序列搜索,得到当前最佳状态序列参数和重估参数θ,其中概率密度函数P(X,S|θ)代替 了最大似然度算法中的P(X,θ),在不同的马尔科夫状态和重估之间跳转。基于K均值算法的参数重估流程如下: 大功率电感厂家 |大电流电感工厂

  • uPD720200在嵌入式媒体网关中的技术应用
    一:嵌入式媒体网关的系统架构嵌入式媒体网关通俗的来说就是一台嵌入式的计算机,其架构和我们平常了解的个人电脑的架构基本类似,只是在普通个人电脑的基础上简化了相关的输入输出设备,以降低整个系统的成本。大
  • [DCDC]注意!平滑后的 DC/DC 转换(稳定化)方式
    之前已说明了采用变压器方式的AC/DC转换顺序为AC-低AC-整流/平滑(DC)-[选项:稳定化DC]以及采用开关方式的AC/DC转换顺序为AC-整流/平滑(DC)-稳定化DC(AC-整流/平滑-稳定化DC)进行转
  • 嵌入式系统应用中NV SRAM存储器的应用
    传统方案中常常采用EPROM、EEPROM和Flash存储程序,NVSRAM具有高速存取时间和与SRAM相同的接口,因而可用于存储程序。本文介绍NVSRAM如何与基于程序和数据存储的微处理器进行接口,
  • 大功率电感